Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Sci Rep ; 11(1): 16248, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1351978

RESUMEN

The use of close-fitting PPE is essential to prevent exposure to dispersed airborne matter, including the COVID-19 virus. The current pandemic has increased pressure on healthcare systems around the world, leading to medical professionals using high-grade PPE for prolonged durations, resulting in device-induced skin injuries. This study focuses on computationally improving the interaction between skin and PPE to reduce the likelihood of discomfort and tissue damage. A finite element model is developed to simulate the movement of PPE against the face during day-to-day tasks. Due to limited available data on skin characteristics and how these vary interpersonally between sexes, races and ages, the main objective of this study was to establish the effects and trends that mask modifications have on the resulting subsurface strain energy density distribution in the skin. These modifications include the material, geometric and interfacial properties. Overall, the results show that skin injury can be reduced by using softer mask materials, whilst friction against the skin should be minimised, e.g. through use of micro-textures, humidity control and topical creams. Furthermore, the contact area between the mask and skin should be maximised, whilst the use of soft materials with incompressible behaviour (e.g. many elastomers) should be avoided.


Asunto(s)
Simulación por Computador , Máscaras/efectos adversos , Enfermedades de la Piel/prevención & control , Cara/anatomía & histología , Análisis de Elementos Finitos , Fricción , Humanos , Máscaras/normas , Enfermedades de la Piel/etiología , Fenómenos Fisiológicos de la Piel , Diseño Centrado en el Usuario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA